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General Workflow of Control Algorithms  

Our control schemes are called from the ur5_project script. In this script, the user records the 

start and target frames, from which the necessary offsets are applied to construct the pick and 

place frames. Each control scheme uses these frames as the target to complete the UR5 

trajectory.   

 

 

 

 

 

 

 

 

 

 

 

Although this was not implemented in the demo due to the missing gripper (in the RVIZ interface 

environment), our code has capability to apply a rigid frame transformation so that we can take 

in the gripper frame as an input and control the end-effector/tool frame position and orientation. 

Inverse Kinematics Control 

Algorithm: 

There are 8 joint angle solutions provided by the inverse kinematics (InvKin) function. The 

multiple solutions arise from there being both negative and positive solutions for the 2nd, 3rd, and 

5th joint angles. Thus, to select the joint angles to move the UR5, the algorithm includes three 

‘filters’ to eliminate the joint angles considered to be “incorrect” (i.e., non-optimal). For 

simplicity, we define 𝑝𝑖 to be the joint solution vectors that are the outputs of the InvKin function, 

while the final chosen joint solution is denoted as 𝑧. (Intermediate filtered solutions at stages 1 

and 2 are denoted by 𝑥 and 𝑦 respectively.) 

The first filter selects only solutions with a second joint angle greater than zero, described by 
equation 1 below.  

Position Location Frame Description

0 Home Configuration ghome

1 Above Pickup gstart + zoffset

2 At pickup gstart

3 Above Pickup gstart + zoffset

4 Above Place gtarget + zoffset

5 At Place gtarget

6 Above Place gtarget + zoffset

Figure 1: A workflow summary of the ur5_project script. Note the table indicates how the 6 
desired frames were setup for the pick and place task. 



   

 

   

 

𝑝𝑖   ∈  𝑥  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝜃2,𝑖  ≥  0                                                  Eq (1) 

This causes the robot to only choose “elbow up” configurations and avoids collisions with the 
table it is mounted on. The second filter sorts based on the first joint angle 𝜃1 in the remaining 
solutions, using equation 2.  

𝑦  = arg min ||𝑥𝑖(𝜃1) − 𝑧𝑝𝑟𝑒𝑣(𝜃1)||                                               Eq (2) 

It selects the joint angle 𝜃1 most similar to the previous configuration (𝑧𝑝𝑟𝑒𝑣(𝜃1)) of the robot, 

which decreases the need for extra movements. This criterion was especially important to use 
for filtering, as it causes all the other joints to move as well. The third and final filter chooses the 
solution most similar to the joint angles of the current robot position. This is described 
mathematically in equation 3.  

    𝑧  = arg min ||𝑦𝑖 − 𝑧𝑝𝑟𝑒𝑣||                                                    Eq (3) 

By taking the absolute magnitude of the difference between the remaining joint angle vectors 
and the previous configuration, the robot can correctly select the best possible solution to move 
each time. The initial previous configuration is an important part of the second and third filters, 
so we chose it to be the home frame. This causes the robot to have another layer of protection 
for table avoidance, as it will choose the configuration that is most like the home frame, which 
tends to be in space and not colliding with the table.  

We also have additional singularity checks in the algorithm. Should the Jacobian of the 𝑧 joint 

vector indicate singularity, the algorithm searches for the next best joint vectors (not in 

singularity) to complete the motion. 

Simulation Results: 

To test the algorithm, simulations at various positions in RVIZ were done to guarantee correct 

behavior when working with the physical robot. The algorithm deals with the singularities and 

table collision cases gracefully. Figure 2 shows the resulting position of one of these RVIZ 

simulations.  

Figure 2: Inverse Kinematics Simulation Results 



   

 

   

 

In this figure, there are 2 desired frames g1 and g2 for the robot to move to; these are the pick-

up and place locations. The robot begins 15 cm above these locations, then moves down until it 

is in the correct position and orientation about the item to be picked up. With movements like 

this, there is error that occurs due to the calculation. These were measured using equations 4 

and 5, where 𝑅𝑒𝑒 and 𝑝𝑒𝑒 are the rotation and position describing the end effector frame, and 

𝑅𝑔𝑖
and  𝑝𝑔𝑖

 are the rotation matrix and position vector of each desired frame in the pick and 

place sequence. 

𝑅𝑒𝑟𝑟𝑜𝑟 =  √𝑇𝑟 ((𝑅𝑒𝑒 −  𝑅𝑔𝑖
) ∗ (𝑅𝑒𝑒 −  𝑅𝑔𝑖

)
𝑇

)                                            Eq (4) 

𝑝𝑒𝑟𝑟𝑜𝑟 = ‖𝑝𝑒𝑒 − 𝑝𝑔𝑖
‖                                                                  Eq (5) 

Throughout testing, these errors never increased above a marginal value of about −10−3. This 

error is marginal and ultimately has little effect on the effectiveness of the overall inverse 

kinematics algorithm. For the simulation in Figure 2, the error was:   

• Start Frame Error: 𝑝𝑒𝑟𝑟 = 0.01862 𝑐𝑚 and 𝑅𝑒𝑟𝑟 = 6.491 × 10−5 

• End Frame Error: 𝑝𝑒𝑟𝑟 = 0.00185 𝑐𝑚 and 𝑅𝑒𝑟𝑟 = 8.340 × 10−5 

These results were similar to our demo results. In general, the Inverse Kinematics Control Scheme 

performed the quickest out of our 3 control schemes, taking less than 2 minutes to complete the 

task.  

Resolved Rate Control 

Algorithm: 

Our resolved rate control algorithm first defines our thresholds and time step and gets the initial 

error. We chose thresholds of 𝑣  =  0.4  and 𝜔 = 12.5°. We defined our timestep as constant 

𝑡𝑠𝑡𝑒𝑝 =  0.1 so that we could vary the gain to adjust the speed of the robot. We want the robot 

to take bigger steps when it is farther away from the goal frame so that it is fast and then take 

small steps when it is close to the target frame to avoid overshooting. We start with a gain 𝐾  =

 1 which we adjust dynamically based on the error.  

We then calculate an initial error:  

𝑒𝑟𝑟𝑜𝑟 =  𝑔𝑑
−1 ∗ 𝑔𝑟𝑒𝑎𝑙 

We then have a getXi function which finds the twist of the error using the following formulas 

from MLS where R represents the rotation part of the error transformation and p represents the 

translation part of the error matrix: 

𝜃  =   cos−1 (
𝑡𝑟𝑎𝑐𝑒(𝑅)  −  1

2
) 

𝜔  =  
1

2⋅sin 𝜃
[𝑅  −  𝑅𝑇]𝑉  



   

 

   

 

𝐴  =  (𝐼  −  𝑅) ⋅ 𝑠𝑘𝑒𝑤(𝜔)  +  𝜔 ⋅ 𝜔𝑇 ⋅ 𝜃 

𝑣  =  𝑖𝑛𝑣(𝐴) ⋅ 𝑝 

We then set up a while loop with our stopping condition being when 𝑣  and 𝜔𝑑𝑖𝑓𝑓 are both below 

their respective thresholds. Here, 𝑣𝑘 represents the norm of the velocity of the error twist and 

𝑤𝑘 represents the angle between the real rotation and the target rotation calculated using the 

following equations where 𝑅𝑒𝑒 represents the rotation component of the end effector frame, 𝑅𝑑 

represents the rotation component of the desired frame, and 𝑅𝑒𝑑 represents the rotational 

transformation between the end effector and the desired frame:  

𝑅𝑒𝑑 = 𝑅𝑒𝑒
𝑇 ⋅ 𝑅𝑑 

𝜔𝑑𝑖𝑓𝑓   =   cos−1 (
𝑡𝑟𝑎𝑐𝑒(𝑅) − 1

2
) 

Inside of this while loop, we first find the current joint angles and calculate 𝐽𝑏, the body Jacobian 

of the current joint angles. We then use this information to calculate the next desired joint angles 

based on the equation given in assignment 3 where q2 is the next set of joint angles that we want 

to move the robot to: 

𝑞2  =  𝑞  −  [𝐾 ⋅ 𝑡𝑠𝑡𝑒𝑝 ⋅ 𝐽𝑏
−1 ⋅ 𝑋𝑖] 

We then check for a singularity and check to see if the robot will hit the table before moving the 

joints to the calculated q2. For singularity, we check whether the determinant of the body 

Jacobian of the q2 position is close to zero. If it is close to a singularity, we decrease the K by 33% 

recalculate q2, and then continue moving. This will allow the robot to move out of the singularity. 

To check if we are close to hitting the table, we see if the position of the ee_link frame is 15 cm 

above the table and that the joint angle 𝜃2 between [−𝜋,  0]. If both conditions are true, then 

there is no configuration in which the robot could hit the table. If these conditions are not met, 

then we decrease the K by 50% and recalculate q2. All these conditions will once again be re-

checked for the newly calculated q2, and if the conditions are once again not met, K will once 

again be decreased and so on. Once the conditions are met, the robot will continue moving to a 

new q2 position and K will be reset to its original value. This will allow the robot to move away 

from the table when a table hit is indicated on its next move and avoid approaching a singularity 

configuration. 

We then move the robot to q2 and update the error and 𝑣  and 𝜔𝑑𝑖𝑓𝑓. If 𝑣  and 𝜔𝑑𝑖𝑓𝑓 are below 

0.6, indicating that we are getting close to the target position, we decrease K by 5% at each 

iteration within this threshold. As such, the robot slows down by taking smaller steps as it 

approaches its target to avoid overshooting. We repeated this until 𝑣 and 𝜔𝑑𝑖𝑓𝑓were below their 

respective thresholds. After 𝑣 and 𝜔𝑑𝑖𝑓𝑓 are below their respective thresholds, we break out of 

the while loop and report the final error, using equations 4 and 5 defined previously.  

 



   

 

   

 

Simulation Results: 

We obtained the following error for the simulated pick-and-place task (Figure 3):  

• Start Frame Error: 𝑝𝑒𝑟𝑟 = 2.98 𝑐𝑚 and 𝑅𝑒𝑟𝑟 = 0.0048 

• End Frame Error: 𝑝𝑒𝑟𝑟 = 2.86 𝑐𝑚 and 𝑅𝑒𝑟𝑟 = 5.668 × 10−4 

Our resolved rate control code took about 8 minutes to complete the full pick and place task 

depending on where we set the desired pick and place positions, with similar small errors. This is 

slower than we would have liked but, however, it was very accurate, especially for the rotational 

components. Note that the 𝑝𝑒𝑟𝑟 stems from the vertical offset thresholding applied in the 

algorithm. We can increase this convergence threshold so that the ee_link frame aligns perfectly 

with the desired frames; however, this comes at the cost of increasing the task completion time.  

Transpose-Jacobian Control 

Algorithm: 

Our algorithm approach for the Transpose Jacobian was very similar to the one used in Resolved 

Rate, however it consisted of different thresholds, different gains and time steps, and a different 

equation to find the next set of joint angles. The thresholds used for our demo were 𝑣 = 0.5 and 

𝜔 = 20° for faster convergence. Our initial gain (K) was set at 1 while the time step was always 

constant at 0.075. As done in Resolve Rate, we calculate initial error using 𝑒𝑟𝑟𝑜𝑟 =  𝑔𝑑
−1 ∗ 𝑔𝑟𝑒𝑎𝑙 

and then utilize the getXi() function to find the twist of the error, using the equations listed above 

in the Resolve Rate section. 

Next, we iterate through a while loop until 𝑣 and 𝜔𝑑𝑖𝑓𝑓are both below their respective thresholds. 

𝑣𝑘 and 𝜔𝑘 are continuously calculated throughout the loop to find the norm of the velocity of the 

error twist and the angle between the real rotation and the target rotation, respectively. The 

process of convergence consists of finding the current joint angles and calculating its associated 

Figure 3: (Left) Resolved Rate Control testing starting position and (Right) Resolved 
Rate Control testing ending (pick) position. 



   

 

   

 

body Jacobian, 𝐽𝑏. We then calculate the next desired joint angles based, q2, using the transpose 

Jacobian equation, 𝑞2 = 𝑞  − [𝐾 ⋅ 𝑡𝑠𝑡𝑒𝑝 ⋅ 𝐽𝑏
𝑇 ⋅ 𝑋𝑖]. After calculating a q2, the algorithm checks if the 

new position will lead to a singularity or table hit. The singularity and table hit detection 

algorithms are identical to the Resolved Rate ones.  

After the conditions are met, the robot moves to q2 and updates errors 𝑣 and 𝜔𝑑𝑖𝑓𝑓. Once 𝑣 and 

𝜔𝑑𝑖𝑓𝑓 are under 0.4, indicating we are close to the target position, we decrease the value of K by 

50% with each iteration under these conditions. This is repeated until the 𝑣 and 𝜔𝑑𝑖𝑓𝑓 are below 

their respective thresholds and the robot has converged on the target position. Then we end the 

loop and report the final error, using 𝑅𝑒𝑟𝑟𝑜𝑟 and 𝑝𝑒𝑟𝑟𝑜𝑟  defined in Equations 4 and 5.  

Simulation Results: 

When running the simulations with higher thresholds of 𝑣 = 0.5 and 𝜔 = 30°, the error to reach 

our target positions was larger than normal. This is since the robot converges faster than usual, 

taking 6 minutes to get to all 6 locations. Figure 4 depicts a pick and place task moving from two 

test positions, g1e (start) to g2e (target) using the pick and place methodology. The errors for 

this task were as follows:  

• Start Frame Error: 𝑝𝑒𝑟𝑟 = 5.8 𝑐𝑚 and 𝑅𝑒𝑟𝑟 = 0.235 

• End Frame Error: 𝑝𝑒𝑟𝑟 = 4.973 𝑐𝑚 and 𝑅𝑒𝑟𝑟 = 0.271 

As shown in Figure 4, the rotation of the robot is a little off from the desired position while also 

having a noticeable translational disparity. In our demo, the robot behaved erratically, 

undergoing many oscillations (overshooting and undershooting), while converging. This is 

attributed to a higher initial gain (K-value) of 1. Lowering the gain, or the tstep, will help reduce 

these oscillations; however, the cost of smoother operation is the robot converging at a slower 

rate to each target position. In hindsight, we should have demoed with smoother operation, 

however, due to the unclear specifications and the 30-minute demo time limit, we decided that 

speed was more important than accuracy.  

Figure 4: Transpose Jacobian Pick-And-Place Task 



   

 

   

 

Note that when simulated with lower thresholds, of 𝑣 = 0.4 and 𝜔 = 15°, the robot would take 

around 15 minutes to go through the full motion but resulted in much lower error. The error for 

these conditions is approximately 0.13 for rotational error and 2.6 cm for translational error, 

which is considerably lower than the ones for the higher thresholds. 

Extra Credit Task - Drawing 

Algorithm:  

The extra credit task is creating an algorithm for drawing an imported image. The algorithm 

begins by importing a JPEG file and then converting that file to grayscale. Next, the image is 

resized so that it can fit on a piece of paper. Since the algorithm converts each pixel in the image 

to a mm-sized coordinate on the paper, resizing helps fit the drawing into the robot’s workspace. 

Once this task is completed, a canny edge filter is applied to find the outlines of the drawing. 

Finally, the pixel row and column indices (where the filter has found an edge) are compiled into 

a list, which is sorted to draw more efficiently. An example of the edge filter being applied to an 

JPEG is shown in Figure 4 below.  

To draw efficiently, the robot should move as little as possible. Therefore, the image points are 

sorted to minimize distances between points. Essentially, a point in the list is selected, and the 

algorithm determines the closest point indices by calculating the norm of all the differences 

between this initial point (pixel) index and the others. This closest point is then appended 

sequentially in a new list. By doing this, the robot will draw more like a human and not have to 

pick up the pen as often.  

All points were then converted into frames with the following definition: 

𝑔𝑘 =  (

1 0 0 𝑖𝑝𝑖𝑥𝑒𝑙

0 1 0 𝑗𝑝𝑖𝑥𝑒𝑙

0 0 1 0
0 0 0 1

),  

Figure 5: Hopkins Blue Jay Outline 



   

 

   

 

where 𝑖𝑝𝑖𝑥𝑒𝑙 and 𝑗𝑝𝑖𝑥𝑒𝑙 denotes the row and column indices of the pixels. Now that all the pixel 

coordinates were sorted to continuous lines, we added additional offset frames at the end of the 

continuous lines to tell the robot to pick up the pen. To do this, in the sorting algorithm, points 

where distances were greater than 3 pixels were recorded. At these positions, the following 

frames were added 

𝑔𝑘 =  (

1 0 0 𝑖𝑝𝑖𝑥𝑒𝑙

0 1 0 𝑗𝑝𝑖𝑥𝑒𝑙

0 0 1 0.01
0 0 0 1

)   and  𝑔𝑘+1 =  (

1 0 0 (𝑖 + 1)𝑝𝑖𝑥𝑒𝑙

0 1 0 (𝑗 + 1)𝑝𝑖𝑥𝑒𝑙

0 0 1 0.01
0 0 0 1

). 

The final part of the algorithm is then to take the frames of all the pixels and translate them to 

the robot so it can draw the image. First the robot should be positioned at the corner of the 

paper. This frame is then recorded and used as the base frame. Then all the pixel frames were 

transformed to this base frame. Finally, we used the inverse kinematics control scheme 

developed in the pick and place task to create the UR5 trajectory to make the drawing.  

Results: 

Using the algorithm described above, the robot could draw any image provided the correct 

resizing and edge-filter thresholds were applied. We duct-taped a pen to the gripper fingers of 

the UR5 and aligned the pen perpendicularly to the table. We also taped down the page corners 

to the table and positioned the robot to one corner. We initially drew a simple smiley face to test 

the algorithm and calibrate the starting positions. This took several iterations to perfect, the 

drawings of which are shown in Figure 6.  

After drawing the face correctly, we wanted to assess the robustness of our algorithm. We 

wanted to determine the drawing accuracies; thus, to test this, the Johns Hopkins Blue Jay logo 

was drawn, and this is displayed in Figure 7 below.  

Figure 6: Drawing Algorithm Smiley Face Tests 



   

 

   

 

As the image shows, our robot can correctly draw this logo in one color. It loses some precision 

due to the size of the marker we used on the robot and the fact that it is the edge outline of the 

image, but overall, correctly creates the image desired by the user. This provided enough 

evidence for us to demonstrate that our algorithm was successfully in controlling the robot to 

draw an image.  

Video Link for Extra Credit Task: BlueJay_DemoVideo.MOV  

 

Figure 7: Johns Hopkins Logo Drawing 

https://livejohnshopkins-my.sharepoint.com/:v:/g/personal/sydenbe1_jh_edu/ESYIk115lcBOnEgJAFh1ILEBEgun00nw68iY-hevo3CbJA?e=IxDHOM

